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1 CONVERGENCE RATE

Whereas measuring convergence rates for standard �nite element

discretizations is fairly straightforward, the measurement for em-

bedded methods is more complicated by the need to design a mea-

surement scheme which takes into account the precision with which

the embedded domain is correctly captured. We discuss this problem

more in detail in the following, and describe the setup we use to

verify the convergence rate of the Finite Cell Method for a family of

uniform background meshes with a non-trivial embedded geometry.

1.1 Measuring convergence rate

A popular and straightforward way to study convergence rates of �-

nite element discretizations is to employ theMethod of Manufactured

Solutions (MMS) (see e.g. [Roache 2002]). The idea is to construct the

problem from a prescribed exact solution — in this case a prescribed

displacement function u — by determining the remaining terms in

the PDE so that they are consistent with the desired exact solution.

By judiciously choosing a well-behaved, smooth, solution u, opti-

mal convergence rates in the !2 and �1 norms can then be attained.

However, when manufacturing solutions in this way, one typically

decides on the exact solution before deciding on the domain. Hence,

the shape of the domain has no impact on the exact solution to the

problem, and as a consequence, two di�erent numerical solutions

for two di�erent domains will converge to the same solution when

restricted to the intersection of the two domains. In the context of

embedded methods, this means that solving the PDE on the back-

ground mesh with the standard FEM will essentially give the same

solution as solving the PDE on the exact embedded domain. Hence,

the MMS is not well-suited for studying the convergence rate of

the FCM, as essentially the same solution is obtained regardless of

whether the exact embedded domain is accurately captured or not.
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More than just con�rming expected convergence rates, we would

like to contrast themwith the results of simply applying the standard

FEM applied to the background mesh. This leaves us with some

constraints on how we can formulate our test problem:

• The domain should contain some �at region on which homo-

geneous Dirichlet boundary conditions (zero displacement)

can be consistently applied across all discretizations.

• In order to avoid discrepancies in how boundary integrals are

treated, the solution should satisfy homogeneous Neumann

conditions on the non-Dirichlet portion of the boundary (zero

surface traction).

• The domain must be non-trivial, in the sense that a coarse

polyhedral FEM discretization can not exactly capture its

shape.

• Optimal convergence rates are not generally attained for

real-world problems unless graded or adaptive meshes are

employed. Since we would like to study convergence rates

for regular meshes, the solution must be su�ciently regular

as well (smooth and without sharp gradients).

Sincewe can not useMMS for the aforementioned reasons, andwe

are not aware of any published problems with exact solutions that

would �t the requirements we have laid out, we resort to computing

a high-resolution reference solution and compare a set of lower-

resolution discretizations to the reference solution.

1.2 Problem description

We study the deformation of a linearly elastic material in a static

equilibrium setting, with Poisson’s ratio a = 0 and Young’s modulus

� = 5 · 106 Pa. Consider the unit ball �1 and the half-space � ⊆ R3

de�ned by~ ≥ 0. The intersection �1∩� is a hemisphere, on whose

�at region (~ = 0) we impose the Dirichlet condition u = 0. The

remaining part of the boundary is assumed to have zero traction.

We thus consider the PDE in weak form

−

∫

Ω

P(F) : ∇w3X +

∫

Ω

fext ·w3X = 0 ∀w ∈ + .

Since we do not have an exact solution available, the choice of fext

is crucial to reproducing optimal convergence rates. A simple choice

would be the standard gravitational force. However, this leads to

localized stress concentrations near the structural weak points of

the domain (~ = 0, G2 + I2 = 1), which appears to preclude higher-

order convergence rates with regular meshes, presumably due to

a lack of su�cient regularity in the exact solution. Therefore we

instead use an arti�cial force which is concentrated at the top of

the hemisphere and fades out before reaching the aforementioned

structural weak points. The resulting deformation is a slight dent
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Fig. 1. The reference domain of the hemisphere experiment used for experi-
mental convergence analysis.

on the top of the hemisphere. Speci�cally, we de�ne the body force

fext as

fext (G,~, I) = −U k

(
3
√
G2 + I2

)
~ ŷ,

where ŷ = (0, 1, 0), U := 5 · 105 andk is the standard bump function

de�ned by

k (A ) =




exp

(
− 1

1−A 2

)
, A ∈ (−1, 1)

0 otherwise.

(1)

Note that the composition k (3
√
G2 + ~2) is smooth even though√

G2 + ~2 is not.

1.3 Discretization

In principle, our embedded method could handle curved boundaries

if we were to use an appropriate subdivision integration method

that can accurately deal with curved interfaces and couple it with

our simpli�cation algorithm. However, it would be di�cult with

our current setup to compute an accurate reference solution on

such a curved domain, and our focus is in any case on polyhedral

domains. Therefore we instead consider a tetrahedral approxima-

tion of the hemisphere with 10395 tetrahedra generated by Gmsh

[Geuzaine and Remacle 2009], depicted in Figure 1. This means that

the exact domain Ω is a polyhedron, not a real hemisphere. As a

reference solution, we apply two rounds of uniform re�nement to

produce a boundary-conforming tetrahedral mesh with 665k ele-

ments and 120k vertices. We use cubic tetrahedral elements for the

�nite element discretization, so that the total node count is 3.1M

nodes.

We consider a family of uniform hexadral meshes with (28)×(28)×

8 cells, where 8 ∈ {1, 2, 4, 8, 16, 24, 32}. Each uniform mesh covers

the domain [−1, 1] × [0, 1] × [−1, 1]. The mesh cell width ℎ is then

de�ned by ℎ := 1/8 . For each resolution 8 , all cells that lie completely

outside the embedded domain Ω are discarded, and the remaining

cells form the background mesh Ω
8
ℎ
. We consider elements Hex8

(trilinear hexahedra) and Hex20 (quadratic Serendipity elements).

We solve the problem in two ways: by simulating on Ω
8
ℎ
with the

standard FEM, and by embedding the exact domain Ω into Ω
8
ℎ
with

the algorithm from Section 4 to form quadrature rules that we use

for the FCM. Since we focus on order of convergence for the �nite

element spaces, we would like to eliminate systematic errors due

to inaccurate integration. In all experiments, we use su�ciently

high-order quadratures so that quantities are exactly integrated

(in the case of the sti�ness matrix and internal forces) or to very

high precision with polynomial order 10 in the case of the external

force, which contains a non-polynomial exponential function. For

the sti�ness matrix and internal force, we used our simpli�cation

algorithm, which gave the same results as in the non-simpli�ed case,

as expected.
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Fig. 2. !2 errors relative to a high-resolution reference solution for a static
equilibrium problem.

To measure the errors, we compute the squared !2 error in each

element of the reference discretization (cubic tetrahedra) by interpo-

lating the displacements of the reference solution and the FEM/FCM

approximation at quadrature point locations in the cells of the refer-

ence mesh. The resulting !2 error as a function of mesh width ℎ is

depicted in Figure 2. The expected convergence rates for a Finite Ele-

ment space with polynomial degree ? is O(ℎ?+1) [Brenner and Scott

2007], which corresponds to ℎ2 for Hex8 and ℎ3 for Hex20. Here

we see how the standard FEM (which does not treat the embedded

domain accurately) experiences a severe reduction in convergence

rate. In this case, the overall error is dominated by the local error

near the hemisphere surface, which is a result of the poorly captured

geometry. Moreover, the higher-order Hex20 elements are unable

to improve over the (already poor) Hex8 results, suggesting that

the main bene�ts of a higher-order discretization are essentially

lost when the geometry is poorly approximated. In contrast, the

FCM results show optimal convergence rates, though the rate for

Hex20 diminishes somewhat for higher resolutions (lower ℎ). Since

an exact solution is not available, we are not able to ascertain with

certainty the cause, but some plausible factors that come into play

are:

• The (numerical) reference solution is perhaps not accurate

enough.

• The exact solution may not be su�ciently regular.

• The handling of Dirichlet boundary conditions is not optimal,

in the sense that some nodes of the background mesh at~ = 0

are constrained to have zero displacement even though they

lie outside of the embedded domain Ω. This might perhaps

overconstrain the solution space for higher-order elements.
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Nevertheless, the results demonstrate that the FCM coupled with

our embedded quadrature algorithm is able to attain higher order

convergence rates, and clearly outperforms the standard FEM for

hexahedral meshes where the geometry can not be accurately cap-

tured. This is especially true for higher-order elements, such as the

quadratic Serendipity Hex20 elements.
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